Development and characterization of novelly grown fire-resistant fungal fibers

Author:

Zhang Xijin,Li Yanjun,Fan Xudong,Wnek Gary,Liao Ya-Ting T.,Yu Xiong

Abstract

AbstractThis study conducted a comprehensive characterization and analyses on the fire-resistant behaviors of novel fungal fibers grown with substrate containing Silica (Si) source at multiple scales. At micro-scale, the results of SEM showed that silica affected the physiological activities of fungi, with the extent of effects depending upon its concentration. Fourier-transform infrared (FTIR) spectra displayed the existence of Si–O–C chemical bonds in fungal fibers grown with Si source, indicating that Si source becomes a part of the structure of fungal fibers. Thermogravimetric analysis (TGA) and Microscale combustion calorimetry (MCC) of fungal fibers exhibit an early thermal decomposition of non-combustible components, which will potentially help release the thermal stress and mitigation of spalling when used in concrete. Compared with polypropylene (PP) fibers, fungal fibers have a lower thermal degradation rate, a higher residual weight, a lower heat release peak temperature, and less total heat of combustion; all of these indicate improved thermal stability and fire resistance, and a lower rate of function loss in case of a fire. Additionally, the thermal stability and fire resistance of fungal fibers were improved with the increase of Si source concentration in the nutrition medium. For example, addition of 2% Si source in the feeding substrate leads to a 23.21% increase in residual weight in TGA, and a 23.66 W/g decrease in peak heat release rate as well as a 2.44 kJ/g reduction in total heat of combustion in MCC. At laboratory scale, compared with PP fibers, fungal fibers grown with 2% Si source have a higher residual weight of 40.40%, a higher ignition temperature of 200.50 °C, and a declined flame height of 11.64 mm in real fire scenarios. Furthermore, only in the fungal fibers grown with Si source, partial burning occurred. In post-fire conditions, the microstructure of residual char from fungal fibers grown with higher content of Si source became denser, which would lead to a reduction of the fuel vapor release and heat transfer. FTIR spectra of residual char demonstrated that fungal fibers grown with Si source formed more stable chemical bonds with higher heat of chemical bond formation, contributing to improved thermal stability and fire resistance. Therefore, compared with traditional fibers used for fiber reinforced concrete, incorporating the new natural grown fibers will potentially further improve the fire resistance of concrete and mitigate the concrete spalling.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3