Abstract
AbstractActivity-dependent plasticity refers to a range of mechanisms for adaptively reshaping neuronal connections. We model their common principle in terms of adaptive rewiring of network connectivity, while representing neural activity by diffusion on the network: Where diffusion is intensive, shortcut connections are established, while underused connections are pruned. In binary networks, this process is known to steer initially random networks robustly to high levels of structural complexity, reflecting the global characteristics of brain anatomy: modular or centralized small world topologies. We investigate whether this result extends to more realistic, weighted networks. Both normally- and lognormally-distributed weighted networks evolve either modular or centralized topologies. Which of these prevails depends on a single control parameter, representing global homeostatic or normalizing regulation mechanisms. Intermediate control parameter values exhibit the greatest levels of network complexity, incorporating both modular and centralized tendencies. The simulation results allow us to propose diffusion based adaptive rewiring as a parsimonious model for activity-dependent reshaping of brain connectivity structure.
Funder
Odysseus grant from the Flemish Organization of Science
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献