Neural networks and particle swarm for transformer oil diagnosis by dissolved gas analysis

Author:

Guerbas Fettouma,Benmahamed Youcef,Teguar Youcef,Dahmani Rayane Amine,Teguar Madjid,Ali Enas,Bajaj Mohit,Dost Mohammadi Shir Ahmad,Ghoneim Sherif S. M.

Abstract

AbstractThe lifetime of power transformers is closely related to the insulating oil performance. This latter can degrade according to overheating, electric arcs, low or high energy discharges, etc. Such degradation can lead to transformer failures or breakdowns. Early detection of these problems is one of the most important steps to avoid such failures. More efficient diagnostic systems, such as artificial intelligence techniques, are recommended to overcome the limitations of the classical methods. This work deals with diagnosing the power transformer insulating oil by analysis of dissolved gases using new techniques. For this, we have proposed intelligent techniques based on Multilayer artificial neural networks (ANN). Thus, a multi-layer ANN-based model for fault detection is presented. To improve its classification rate, this one was optimized by a meta-heuristic technique as the particle swarm optimization (PSO) technique. Optimized ANNs have never been used in transformer insulating oil diagnostics so far. The robustness and effectiveness of the proposed model is demonstrated, and high accuracy is obtained.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Optimization Method for Short-Term Power Load Forecasting Based on IPSO-SVM;2024 6th International Conference on Energy Systems and Electrical Power (ICESEP);2024-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3