Preparation and characterization of multiphase ceramic designer waste forms

Author:

Clark Braeden M.,Tumurugoti Priyatham,Sundaram Shanmugavelayutham K.,Amoroso Jake W.,Marra James C.

Abstract

AbstractThe long-term performance, or resistance to elemental release, is the defining characteristic of a nuclear waste form. In the case of multiphase ceramic waste forms, correlating the long-term performance of multiphase ceramic waste forms in the environment to accelerated chemical durability testing in the laboratory is non-trivial owing to their complex microstructures. The fabrication method, which in turn affects the microstructure, is further compounding when comparing multiphase ceramic waste forms. In this work, we propose a “designer waste form” prepared via spark plasma sintering to limit interaction between phases and grain growth during consolidation, leading to monolithic high-density waste forms, which can be used as reference materials for comparing the chemical durability of multiphase waste forms. Designer waste forms containing varying amounts of hollandite in the presence of zirconolite and pyrochlore in a fixed ratio were synthesized. The product consistency test (PCT) and vapor hydration test (VHT) were used to assess the leaching behavior. Samples were unaffected by the VHT after 1500 h. As measured by the PCT, the fractional Cs release decreased as the amount of hollandite increased. Elemental release from the zirconolite and pyrochlore phases did not appear to significantly contribute to the elemental release from the hollandite phase in the designer waste forms.

Funder

Nuclear Energy University Program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3