Unveiling the microbial communities and metabolic pathways of Keem, a traditional starter culture, through whole-genome sequencing

Author:

Rana Babita,Chandola Renu,Sanwal Pankaj,Joshi Gopal Krishna

Abstract

AbstractTraditional alcoholic beverages have played a significant role in the cultural, social, and culinary fabric of societies worldwide for centuries. Studying the microbial community structure and their metabolic potential in such beverages is necessary to define product quality, safety, and consistency, as well as to explore associated biotechnological applications. In the present investigation, Illumina-based (MiSeq system) whole-genome shotgun sequencing was utilized to characterize the microbial diversity and conduct predictive gene function analysis of keem, a starter culture employed by the Jaunsari tribal community in India for producing various traditional alcoholic beverages. A total of 8,665,213 sequences, with an average base length of 151 bps, were analyzed using MG-RAST. The analysis revealed the dominance of bacteria (95.81%), followed by eukaryotes (4.11%), archaea (0.05%), and viruses (0.03%). At the phylum level, Actinobacteria (81.18%) was the most abundant, followed by Firmicutes (10.56%), Proteobacteria (4.00%), and Ascomycota (3.02%). The most predominant genera were Saccharopolyspora (36.31%), followed by Brevibacterium (15.49%), Streptomyces (9.52%), Staphylococcus (8.75%), Bacillus (4.59%), and Brachybacterium (3.42%). At the species level, the bacterial, fungal, and viral populations of the keem sample could be categorized into 3347, 57, and 106 species, respectively. Various functional attributes to the sequenced data were assigned using Cluster of Orthologous Groups (COG), Non-supervised Orthologous Groups (NOG), subsystem, and KEGG Orthology (KO) annotations. The most prevalent metabolic pathways included carbohydrate, lipid, and amino acid metabolism, as well as the biosynthesis of glycans, secondary metabolites, and xenobiotic biodegradation. Given the rich microbial diversity and its associated metabolic potential, investigating the transition of keem from a traditional starter culture to an industrial one presents a compelling avenue for future research.

Publisher

Springer Science and Business Media LLC

Reference41 articles.

1. Thakur, N. & Bhalla, T. C. Characterization of some traditional fermented foods and beverages of Himachal Pradesh. Indian J. Tradit. Knowl. 3(3), 325–335 (2004).

2. Steinkraus, K. H. Industrialization of Indigenous Fermented Foods, Basel (Marcel Dekker Inc., 1989).

3. Tamang, J. P. Diversity of fermented beverages and alcoholic drinks. In Fermented Foods and Beverages of the World (eds Tamang, J. P. & Kailasapathy, K.) 85–126 (CRC Press, 2010).

4. https://www.einnews.com/pr_news/583581178/global-alcoholic-beverages-market-size-and-market-growth-opportunities.

5. Bal, J., Yun, S. H., Yeo, S. H., Kim, J. M. & Kim, D. H. Metagenomic analysis of fungal diversity in Korean traditional wheat-based fermentation starter nuruk. Food Microbiol. 60, 73–83 (2016).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3