Synthesis of COF-SO3H immobilized on manganese ferrite nanoparticles as an efficient nanocomposite in the preparation of spirooxindoles

Author:

Moein Najafabadi Samira,Safaei Ghomi Javad

Abstract

AbstractThe synthesis of sulfonamide-functionalized magnetic porous nanocomposites is highly significant in chemistry due to their exceptional properties and potential as catalysts. COFs are a new class of organic porous polymers and have significant advantages such as low density, high chemical and thermal stability, and mechanical strength. Therefore, we decided to synthesize COFs based on magnetic nanoparticles, by doing so, we can also prevent the agglomeration of MnFe2O4. MnFe2O4@COF–SO3H possesses a large specific surface area, supermagnetism, and is acidic, making it an optimal catalyst for organic reactions. This particular catalyst was effectively employed in the green and rapid synthesis of various spiro-pyrano chromenes, while several analytical techniques were utilized to analyze its structural integrity and functional groups. The role of a specific site of MnFe2O4@COF–SO3H was confirmed through different control experiments in a one-pot reaction mechanism. It was determined that MnFe2O4@COF–SO3H acts as a bifunctional acid–base catalyst in the one-pot preparation of spirooxindole derivatives. The formation of a spiro skeleton in the multicomponent reaction involved the construction of three new σ bonds (one C–O bond and two C–C bonds) within a single process. The efficiency of the MnFe2O4@COF–SO3H complex is investigated in the synthesis of spirooxindoles of malononitrile, and various isatins with 1,3‐dicarbonyles. The nanocatalyst demonstrated excellent catalytic activity that gave the corresponding coupling products good to excellent yields. Furthermore, the heterogeneous magnetic nanocatalyst used in this study demonstrated recoverability after five cycles with minimal loss of activity.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3