Nuclear and magnetic spin structure of the antiferromagnetic triangular lattice compound LiCrTe2 investigated by $$\mu ^+$$SR, neutron and X-ray diffraction

Author:

Nocerino E.,Witteveen C.,Kobayashi S.,Forslund O. K.,Matsubara N.,Zubayer A.,Mazza F.,Kawaguchi S.,Hoshikawa A.,Umegaki I.,Sugiyama J.,Yoshimura K.,Sassa Y.,von Rohr F. O.,Månsson M.

Abstract

AbstractTwo-dimensional (2D) triangular lattice antiferromagnets (2D-TLA) often manifest intriguing physical and technological properties, due to the strong interplay between lattice geometry and electronic properties. The recently synthesized 2-dimensional transition metal dichalcogenide LiCrTe$$_2$$ 2 , being a 2D-TLA, enriched the range of materials which can present such properties. In this work, muon spin rotation ($$\mu ^+$$ μ + SR) and neutron powder diffraction (NPD) have been utilized to reveal the true magnetic nature and ground state of LiCrTe$$_2$$ 2 . From high-resolution NPD the magnetic spin order at base-temperature is not, as previously suggested, helical, but rather collinear antiferromagnetic (AFM) with ferromagnetic (FM) spin coupling within the ab-plane and AFM coupling along the c-axis. The value if the ordered magnetic Cr moment is established as $$\mu _{\textrm{Cr}}= 2.36~\mu _{\textrm{B}}$$ μ Cr = 2.36 μ B . From detailed $$\mu ^+$$ μ + SR measurements we observe an AFM ordering temperature $$T_{\textrm{N}}\approx 125$$ T N 125  K. This value is remarkably higher than the one previously reported by magnetic bulk measurements. From $$\mu ^+$$ μ + SR we are able to extract the magnetic order parameter, whose critical exponent allows us to categorize LiCrTe$$_2$$ 2 in the 3D Heisenberg AFM universality class. Finally, by combining our magnetic studies with high-resolution synchrotron X-ray diffraction (XRD), we find a clear coupling between the nuclear and magnetic spin lattices. This suggests the possibility for a strong magnon–phonon coupling, similar to what has been previously observed in the closely related compound LiCrO$$_2$$ 2 .

Funder

Swedish Foundation for Strategic Research

Swiss National Science Foundation

Japan Society for the Promotion of Science

Chalmers Area of Advance - Materials Science

Swedish Research Council VR

Carl Tryggers Foundation for Scientific Research

Royal Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3