Enhancing multi-UAV air combat decision making via hierarchical reinforcement learning

Author:

Wang Huan,Wang Jintao

Abstract

AbstractIn the realm of air combat, autonomous decision-making in regard to Unmanned Aerial Vehicle (UAV) has emerged as a critical force. However, prevailing autonomous decision-making algorithms in this domain predominantly rely on rule-based methods, proving challenging to design and implement optimal solutions in complex multi-UAV combat environments. This paper proposes a novel approach to multi-UAV air combat decision-making utilizing hierarchical reinforcement learning. First, a hierarchical decision-making network is designed based on tactical action types to streamline the complexity of the maneuver decision-making space. Second, the high-quality combat experience gained from training is decomposed, with the aim of augmenting the quantity of valuable experiences and alleviating the intricacies of strategy learning. Finally, the performance of the algorithm is validated using the advanced UAV simulation platform JSBSim. Through comparisons with various baseline algorithms, our experiments demonstrate the superior performance of the proposed method in both even and disadvantaged air combat environments.

Funder

University Natural Science Research Project of Anhui Province

Opening Foundation of Wireless Sensor Network and IntelliSense

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3