Author:
Shrivastava Mahesh N.,Sunil A. S.,Maurya Ajeet K.,Aguilera Felipe,Orrego Simón,Sunil P. S.,Cienfuegos Rodrigo,Moreno Marcos
Abstract
AbstractThe quantity and accuracy of satellite-geodetic measurements have increased over time, revolutionizing the monitoring of tectonic processes. Global Navigation Satellite System (GNSS) and satellite radar signals provide observations beyond ground deformation, including how earthquake and tsunami processes affect variations in the ionosphere. Here, we study the Hunga Tonga Hunga Ha’apai (HTHH) volcanic eruption 2022 and its associated tsunami propagation with the analysis GNSS derived Total Electron Content (TEC), Synthetic Aperture Radar (SAR) Sentinel-1 data, complemented with tide gauge observations. We utilize GNSS sites data within a ~ 5000 km radius from the volcanic eruption for estimating the ionospheric perturbation as Vertical TEC. We give evidence on the detection of acoustic gravity, internal gravity, and atmospheric Lamb waves signatures in the TEC perturbation. In particular, the internal gravity waves that concentrated in the southwest of Tonga, directly correlates with the observed tsunami propagation direction as accounted by the tide gauge measurements. However, the acoustic gravity wave signature in the TEC is dominant in the north direction suggesting a surface deformation, which could be verified using Sentinel-1A SAR amplitude data. The analysis presented herein shows that within 5 h of the volcanic eruption, the central part of the HTHH island landscape disappeared with the biggest explosion. The unprecedented detail resolved by integrating satellite data yields previously unknown details of the deformation of the 2022 HTHH volcano eruption.
Funder
Millenium Institute on Volcanic Risk Research - Ckelar Volcanoes
Centro de Investigación para la Gestión Integrada del Riesgo de Desastres
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献