Mutational processes in cancer preferentially affect binding of particular transcription factors

Author:

Liu Mo,Boot Arnoud,Ng Alvin W. T.,Gordân Raluca,Rozen Steven G.

Abstract

AbstractProtein binding microarrays provide comprehensive information about the DNA binding specificities of transcription factors (TFs), and can be used to quantitatively predict the effects of DNA sequence variation on TF binding. There has also been substantial progress in dissecting the patterns of mutations, i.e., the "mutational signatures", generated by different mutational processes. By combining these two layers of information we can investigate whether certain mutational processes tend to preferentially affect binding of particular classes of TFs. Such preferential alterations of binding might predispose to particular oncogenic pathways. We developed and implemented a method, termed "Signature-QBiC", that integrates protein binding microarray data with the signatures of mutational processes, with the aim of predicting which TFs’ binding profiles are preferentially perturbed by particular mutational processes. We used Signature-QBiC to predict the effects of 47 signatures of mutational processes on 582 human TFs. Pathway analysis showed that binding of TFs involved in NOTCH1 signaling is strongly affected by the signatures of several mutational processes, including exposure to ultraviolet radiation. Additionally, toll-like-receptor signaling pathways are also vulnerable to disruption by this exposure. This study provides a novel overview of the effects of mutational processes on TF binding and the potential of these processes to activate oncogenic pathways through mutating TF binding sites.

Funder

Singapore National Medical Research Council

Ministry of Health -Singapore

National Science Foundation

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3