Gate induced quantum wires in GaAs/AlGaAs heterostructures by cleaved edge deposition

Author:

Alt L.,Reichl C.,Berl M.,Dietsche W.,Wegscheider W.

Abstract

AbstractElectric conductors with dimensions reduced to the nanometer scale are the prerequisite of the quantum devices upon which the future advanced electronics is expected to be based. In the past, the fabrication of one-dimensional (1D) wires has been a particular challenge because they have to be defect-free over their whole length, which can be several tens µm. Excellent 1D wires have been produced by cleaving semiconductors (GaAs, AlGaAs) in ultra high vacuum and overgrowing the pristine edge surface by molecular beam epitaxy (MBE)1,2. Unfortunately, this cleaved edge overgrowth (CEO) technique did not find wide-spread use because it requires a series of elaborate steps that are difficult to accomplish. In this Letter, we present a greatly simplified variation of this technique where the cleaving takes place in ambient air and the MBE overgrowth is replaced by a standard deposition process. Wires produced by this cleaved edge deposition (CED) technique have properties that are as least as good as the traditional CEO ones. Due to its simplicity, the CED technique offers a generally accessible way to produce 1D devices.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3