Identifying activity level related movement features of children with ASD based on ADOS videos

Author:

Jin Xuemei,Zhu Huilin,Cao Wei,Zou Xiaobing,Chen Jiajia

Abstract

AbstractAutism spectrum disorder (ASD) is a neurodevelopmental disorder that affects about 2% of children. Due to the shortage of clinicians, there is an urgent demand for a convenient and effective tool based on regular videos to assess the symptom. Computer-aided technologies have become widely used in clinical diagnosis, simplifying the diagnosis process while saving time and standardizing the procedure. In this study, we proposed a computer vision-based motion trajectory detection approach assisted with machine learning techniques, facilitating an objective and effective way to extract participants’ movement features (MFs) to identify and evaluate children’s activity levels that correspond to clinicians’ professional ratings. The designed technique includes two key parts: (1) Extracting MFs of participants’ different body key points in various activities segmented from autism diagnostic observation schedule (ADOS) videos, and (2) Identifying the most relevant MFs through established correlations with existing data sets of participants’ activity level scores evaluated by clinicians. The research investigated two types of MFs, i.e., pixel distance (PD) and instantaneous pixel velocity (IPV), three participants’ body key points, i.e., neck, right wrist, and middle hip, and five activities, including Table-play, Birthday-party, Joint-attention, Balloon-play, and Bubble-play segmented from ADOS videos. Among different combinations, the high correlations with the activity level scores evaluated by the clinicians (greater than 0.6 with p < 0.001) were found in Table-play activity for both the PD-based MFs of all three studied key points and the IPV-based MFs of the right wrist key point. These MFs were identified as the most relevant ones that could be utilized as an auxiliary means for automating the evaluation of activity levels in the ASD assessment.

Funder

Science and Technology Program of Guangzhou, China, Key Area Research and Development Program

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3