Cannabidiol improves muscular lipid profile by affecting the expression of fatty acid transporters and inhibiting de novo lipogenesis

Author:

Bielawiec Patrycja,Dziemitko Sylwia,Konstantynowicz-Nowicka Karolina,Chabowski Adrian,Dzięcioł Janusz,Harasim-Symbor Ewa

Abstract

AbstractObesity is one of the principal public health concerns leading to disturbances in glucose and lipid metabolism, which is a risk factor for several chronic diseases, including insulin resistance, type 2 diabetes mellitus, and cardiovascular diseases. In recent years, it turned out that cannabidiol (CBD) is a potential therapeutic agent in the treatment of obesity and its complications. Therefore, in the present study, we used CBD therapy (intraperitoneal injections in a dose of 10 mg/kg of body mass for 14 days) in a rat model of obesity induced by a high-fat diet (HFD). Gas–liquid chromatography and Western blotting were applied in order to determine the intramuscular lipid content and total expression of selected proteins in the white and red gastrocnemius muscle, respectively. Based on fatty acid composition, we calculated de novo lipogenesis ratio (16:0/18:2n-6), desaturation ratio (18:1n-9/18:0), and elongation ratios (18:0/16:0, 20:0/18:0, 22:0/20:0 and 24:0/22:0), in the selected lipid fractions. Two-week CBD administration significantly reduced the intramuscular fatty acids (FAs) accumulation and inhibited de novo lipogenesis in different lipid pools (in the free fatty acid, diacylglycerol, and triacylglycerol fractions) in both muscle types, which coincided with a decrease in the expression of membrane fatty acid transporters (fatty acid translocase, membrane-associated fatty acid binding protein, and fatty acid transport proteins 1 and 4). Moreover, CBD application profoundly improved the elongation and desaturation ratios, which was in line with downregulated expression of enzymes from the family of elongases and desaturases regardless of the metabolism presented by the muscle type. To our knowledge, this study is the first that outlines the novel effects of CBD action on skeletal muscle with different types of metabolism (oxidative vs. glycolytic).

Funder

Medical University of Bialystok

National Science Centre of Poland

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3