Author:
Zeng Siyuan,Gao Yicong,Qiu Hao,Xu Junjun,Tan Jianrong
Abstract
AbstractSelf-spiraling actuators are widely found in nature and have high research and actuator-application value in self-lock and self-assembly. Four-dimensional (4D) printing is a new generation additive manufacturing of smart materials and has shown great potential for the fabrication of multi-functional and customized structures. The microarchitecture design of a bilayer actuator could bring flexible and diversified self-spiraling behaviors and more possibilities for practical application by combing 4D printing. This work investigates the stimuli effects of fiber patterns and fabrication parameters on self-spiraling behaviors of the bilayer actuator via both experimental and theoretical methods. This work may potentially provide pattern design guidance for 4D-printed self-spiraling actuators to meet different application requirements.
Funder
Natural Science Foundation of Zhejiang Province
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献