A continuation-dynamic constitution analysis approach based on digital stable marker tracing and study on simulation of ecological tidal water diversion

Author:

Xing Mengya,Qu Simin,Xu Hui,Shi Peng,Chen Xing,Ji Feifei,Liu Minton

Abstract

AbstractWater Diversion Projects have become increasingly popular in improving water quality in various water ecosystems. However, these projects also require a more comprehensive evaluation. In this study, we introduced a digital stable marker tracing module and proposed a continuation-dynamic constitution analysis approach. We applied this approach to analyze the ecological tidal water diversion in Changshu town, China. The results showed that the mean diversion water age of the Yangtze River water source was 10.80 h, the residence time of the background water source in Baimaotang was approximately 4.0 h, and the contribution of inflow water sources from tributaries accounted for 15% of discharges. The results can demonstrate practicality of our approach in quantitatively evaluating water diversion impacts and optimizing cooperative diversion projects. Furthermore, our discussion led to the design of an ecological tidal water diversion based on optimized cooperative diversion, which showed element-complementary and whole-comprehensive effects. This indicates that the ecological tidal water diversion can extend the impact of cooperative diversion. The continuation-dynamic constitution analysis approach enhances the tracing capacity of inflow constitution and enables the distinction of different time-varying distributions of each inflow constitution. Therefore, this approach holds promise as an embedded “Digital stable marker tracing” module in the model.

Funder

National Natural Science Foundation of China

Water Conservancy Science and Technology Project of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3