Development of phenotyping algorithms for hypertensive disorders of pregnancy (HDP) and their application in more than 22,000 pregnant women

Author:

Mizuno Satoshi,Wagata Maiko,Nagaie Satoshi,Ishikuro Mami,Obara Taku,Tamiya Gen,Kuriyama Shinichi,Tanaka Hiroshi,Yaegashi Nobuo,Yamamoto Masayuki,Sugawara Junichi,Ogishima Soichi

Abstract

AbstractRecently, many phenotyping algorithms for high-throughput cohort identification have been developed. Prospective genome cohort studies are critical resources for precision medicine, but there are many hurdles in the precise cohort identification. Consequently, it is important to develop phenotyping algorithms for cohort data collection. Hypertensive disorders of pregnancy (HDP) is a leading cause of maternal morbidity and mortality. In this study, we developed, applied, and validated rule-based phenotyping algorithms of HDP. Two phenotyping algorithms, algorithms 1 and 2, were developed according to American and Japanese guidelines, and applied into 22,452 pregnant women in the Birth and Three-Generation Cohort Study of the Tohoku Medical Megabank project. To precise cohort identification, we analyzed both structured data (e.g., laboratory and physiological tests) and unstructured clinical notes. The identified subtypes of HDP were validated against reference standards. Algorithms 1 and 2 identified 7.93% and 8.08% of the subjects as having HDP, respectively, along with their HDP subtypes. Our algorithms were high performing with high positive predictive values (0.96 and 0.90 for algorithms 1 and 2, respectively). Overcoming the hurdle of precise cohort identification from large-scale cohort data collection, we achieved both developed and implemented phenotyping algorithms, and precisely identified HDP patients and their subtypes from large-scale cohort data collection.

Funder

Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3