Author:
Mizuno Satoshi,Wagata Maiko,Nagaie Satoshi,Ishikuro Mami,Obara Taku,Tamiya Gen,Kuriyama Shinichi,Tanaka Hiroshi,Yaegashi Nobuo,Yamamoto Masayuki,Sugawara Junichi,Ogishima Soichi
Abstract
AbstractRecently, many phenotyping algorithms for high-throughput cohort identification have been developed. Prospective genome cohort studies are critical resources for precision medicine, but there are many hurdles in the precise cohort identification. Consequently, it is important to develop phenotyping algorithms for cohort data collection. Hypertensive disorders of pregnancy (HDP) is a leading cause of maternal morbidity and mortality. In this study, we developed, applied, and validated rule-based phenotyping algorithms of HDP. Two phenotyping algorithms, algorithms 1 and 2, were developed according to American and Japanese guidelines, and applied into 22,452 pregnant women in the Birth and Three-Generation Cohort Study of the Tohoku Medical Megabank project. To precise cohort identification, we analyzed both structured data (e.g., laboratory and physiological tests) and unstructured clinical notes. The identified subtypes of HDP were validated against reference standards. Algorithms 1 and 2 identified 7.93% and 8.08% of the subjects as having HDP, respectively, along with their HDP subtypes. Our algorithms were high performing with high positive predictive values (0.96 and 0.90 for algorithms 1 and 2, respectively). Overcoming the hurdle of precise cohort identification from large-scale cohort data collection, we achieved both developed and implemented phenotyping algorithms, and precisely identified HDP patients and their subtypes from large-scale cohort data collection.
Funder
Japan Society for the Promotion of Science
Japan Agency for Medical Research and Development
Publisher
Springer Science and Business Media LLC