Machine-learning based reconstructions of primary and secondary climate variables from North American and European fossil pollen data

Author:

Salonen J. SakariORCID,Korpela Mikko,Williams John W.ORCID,Luoto MiskaORCID

Abstract

Abstract We test several quantitative algorithms as palaeoclimate reconstruction tools for North American and European fossil pollen data, using both classical methods and newer machine-learning approaches based on regression tree ensembles and artificial neural networks. We focus on the reconstruction of secondary climate variables (here, January temperature and annual water balance), as their comparatively small ecological influence compared to the primary variable (July temperature) presents special challenges to palaeo-reconstructions. We test the pollen–climate models using a novel and comprehensive cross-validation approach, running a series of h-block cross-validations using h values of 100–1500 km. Our study illustrates major benefits of this variable h-block cross-validation scheme, as the effect of spatial autocorrelation is minimized, while the cross-validations with increasing h values can reveal instabilities in the calibration model and approximate challenges faced in palaeo-reconstructions with poor modern analogues. We achieve well-performing calibration models for both primary and secondary climate variables, with boosted regression trees providing the overall most robust performance, while the palaeoclimate reconstructions from fossil datasets show major independent features for the primary and secondary variables. Our results suggest that with careful variable selection and consideration of ecological processes, robust reconstruction of both primary and secondary climate variables is possible.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference76 articles.

1. Imbrie, J. & Kipp, N. G. A new micropaleontological method for quantitative paleoclimatology: application to a Late Pleistocene Caribbean core. In The Late Cenozoic Glacial Ages (ed. Turekian, K.K.) 77–181 (Yale University Press, New Haven, 1971).

2. Overpeck, J. T., Webb, T. III & Prentice, I. C. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quat. Res. 23, 87–108 (1985).

3. Birks, H. J. B., ter Braak, C. J. F., Line, J. M., Juggins, S. & Stevenson, A. C. Diatoms and pH reconstruction. Philos. Trans. Royal Soc. B 327, 263–278 (1990).

4. Juggins, S. & Birks, H. J. B. Quantitative environmental reconstructions from biological data. In Tracking Environmental Change Using Lake Sediments, Vol. 5: Data Handling And Numerical Techniques (ed. Birks, H. J. B. et al.) 431–494 (Springer, Dordrecht, 2012).

5. Williams, J. W. & Shuman, B. Obtaining accurate and precise environmental reconstructions from the modern analog technique and North American surface pollen dataset. Quat. Sci. Rev. 27, 669–687 (2008).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3