A mechanical theory of competition between plant root growth and soil pressure reveals a potential mechanism of root penetration

Author:

Tomobe Haruka,Tsugawa Satoru,Yoshida Yuki,Arita Tetsuya,Tsai Allen Yi-Lun,Kubo Minoru,Demura Taku,Sawa Shinichiro

Abstract

AbstractRoot penetration into the soil is essential for plants to access water and nutrients, as well as to mechanically support aboveground structures. This requires a combination of healthy plant growth, adequate soil mechanical properties, and compatible plant–soil interactions. Despite the current knowledge of the static rheology driving the interactions at the root–soil interface, few theoretical approaches have attempted to describe root penetration with dynamic rheology. In this work, we experimentally showed that radish roots in contact with soil of specific density during a specific growth stage fail to penetrate the soil. To explore the mechanism of root penetration into the soil, we constructed a theoretical model to explore the relevant conditions amenable to root entry into the soil. The theory indicates that dimensionless parameters such as root growth anisotropy, static root–soil competition, and dynamic root–soil competition are important for root penetration. The consequent theoretical expectations were supported by finite element analysis, and a potential mechanism of root penetration into the soil is discussed.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Science and Technology Agency

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3