Author:
Ji Changyi,Li Yao,Kittredge Alec,Hopiavuori Austin,Ward Nancy,Yao Peng,Fukuda Yohta,Zhang Yu,Tsang Stephen H.,Yang Tingting
Abstract
AbstractBEST1 is a Ca2+-activated Cl− channel predominantly expressed in retinal pigment epithelium (RPE), and over 250 genetic mutations in the BEST1 gene have been identified to cause retinal degenerative disorders generally known as bestrophinopathies. As most BEST1 mutations are autosomal dominant, it is of great biomedical interest to determine their disease-causing mechanisms and the therapeutic potential of gene therapy. Here, we characterized six Best vitelliform macular dystrophy (BVMD)-associated BEST1 dominant mutations by documenting the patients’ phenotypes, examining the subcellular localization of endogenous BEST1 and surface Ca2+-dependent Cl− currents in patient-derived RPEs, and analyzing the functional influences of these mutations on BEST1 in HEK293 cells. We found that all six mutations are loss-of-function with different levels and types of deficiencies, and further demonstrated the restoration of Ca2+-dependent Cl− currents in patient-derived RPE cells by WT BEST1 gene supplementation. Importantly, BEST1 dominant and recessive mutations are both rescuable at a similar efficacy by gene augmentation via adeno-associated virus (AAV), providing a proof-of-concept for curing the vast majority of bestrophinopathies.
Funder
Grant-in-Aid for Young Scientists (B) from the Japan Society for the Promotion of Science
U.S. Department of Health & Human Services | NIH | National Eye Institute
U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences
Publisher
Springer Science and Business Media LLC
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献