Identification of PIEZO1 as a potential prognostic marker in gliomas

Author:

Zhou Wenjianlong,Liu Xiangxiang,van Wijnbergen Jan Willem Maurits,Yuan Linhao,Liu Yuan,Zhang Chuanbao,Jia Wang

Abstract

AbstractIn multiple solid tumours, including gliomas, the mechanical properties change as the disease progresses. If and how mechanical cues regulate tumour cell proliferation is currently not fully studied. PIEZO1 has recently been identified as a crucial mechanosensitive cation channel in multiple solid tumours. However, we didn’t find any clinical data describing the association between PIEZO1 expression and glioma. To investigate the role of PIEZO1 in gliomas, we analysed PIEZO1 gene expression at the transcriptome level, genomic profiles and the association of PIEZO1 with clinical practice. In total, 1633 glioma samples with transcriptome data, including data from the Chinese Glioma Genome Atlas RNAseq, the Cancer Genome Atlas RNAseq and GSE16011 databases, were included in this study. Clinical information and genomic profiles including somatic mutations were also obtained. We found that PIEZO1 expression was highly correlated with malignant clinical and molecular subtypes of glioma. Gene ontology analysis showed that expression of PIEZO1 was correlated with tumour microenvironment-related genes that encode proteins involved in extracellular matrix (ECM) organization, angiogenesis and cell migration. Additionally, PIEZO1 was shown to be involved in tumour progression by serving as the central checkpoint of multiple ECM remodelling-related signalling pathways to modulate tumour cell proliferation and the tumour microenvironment in turn. Finally, high PIEZO1 expression was correlated with reduced survival time and acted as a robust biomarker for poor prognosis in gliomas. Taken together, the results indicated that high PIEZO1 expression is closely associated with highly malignant gliomas. Importantly, PIEZO1 serves as a key factor involved in sensing mechanical properties in the tumour and can regulate both tumour cells and their microenvironment to promote glioma progression, and it is also a potential therapeutic target for the treatment of gliomas.

Funder

National Natural Science Foundation of China

Beijing Municipal Health Commission of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3