All optical modulation in vertically coupled indium tin oxide ring resonator employing epsilon near zero state

Author:

Rajput Swati,Kaushik Vishal,Babu Prem,Pandey Suresh K.,Kumar Mukesh

Abstract

AbstractWe present an innovative approach to achieve all-optical modulation within an ITO-based vertically coupled ring resonator. This method leverages the material's enhanced nonlinear response in the near-infrared wavelengths, particularly within the epsilon-near-zero (ENZ) state. To enhance the interaction between light and the material while minimizing scattering losses, our approach employs an ITO-based vertically connected ring resonator. The vertical arrangement eliminates the need for etching fine gaps to separate the ring and bus waveguide. The novel waveguide design addresses the necessity of high sensitivity, non-linear effects and compact size opening the possibilities for all-optical signal processing. This unique resonator structure effectively facilitates the coupling of a high-intensity pump wavelength into the ITO-based micro-ring resonator. Consequently, this optical pumping induces electron heating within the ITO material, leading to a significant increase in its nonlinear optical properties. This, in turn, results in a noteworthy alteration of ITO's refractive index, specifically in the unity order, thereby modifying the complex effective index of the optical beam propagating at 1550 nm. Our experimental findings demonstrate an impressive extinction ratio of 18 dB for a 30 µm long device, which highlights the efficiency of our approach in achieving all-optical modulation through the optical pumping of an ITO-based vertically coupled ring resonator. The proposed all-optical modulator has outperformed as compared to conventional waveguide-based modulators in terms of extinction ratio and footprint. This novel technique holds immense potential for advancing high-speed data communication systems in the future. As the demand for advanced processing capabilities, such as artificial intelligence, continues to grow, all-optical modulation emerges as a groundbreaking technology poised to revolutionize the next generation of computing and communication systems.

Funder

Science and Engineering Research Board, Government of India

Ministry of Electronics and Information Technology, Government of India

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3