Experimental modelling studies on the removal of dyes and heavy metal ions using ZnFe2O4 nanoparticles

Author:

Zhao Xiaoyu,Baharinikoo Leila,Farahani Meysam Davoodabadi,Mahdizadeh Bentolhoda,Farizhandi Amir Abbas Kazemzadeh

Abstract

AbstractThe presence of dyes and heavy metals in water sources as pollutants is harmful to human and animal health. Therefore, this study aimed to evaluate the efficacy of zinc ferrite (ZnFe2O4) nanoparticles (ZF-NPs) due to their outstanding properties including cost-effectiveness, availability, and applicability for removal of auramine O (AO), methylene blue (MB), and Cd (II). The effect of the main operating parameters such as AO concentration, MB concentration, Cd (II) concentration, adsorbent amount, solution pH, and sonication time was optimized by the response surface methodology (RSM). Optimal conditions were obtained at adsorbent amount of 0.25 g, pH = 6, sonication time of 15 min, and concentration of 15 mg L−1, and more than 91.56% were removed from all three analytes. The adsorption of AO, MB, and Cd (II) onto ZF-NPs followed pseudo-second-order kinetics and the equilibrium data fitted well with Langmuir isotherm. The maximum adsorption capacities of ZF-NPs for AO, MB and Cd (II) were as high as 201.29 mg g−1, 256.76 mg g−1 and 152.48 mg g−1, respectively. Also, the reuse of the adsorbent was investigated, and it was found that the adsorbent can be used for up to five cycles. Based on the results of interference studies, it was found that different ions do not have a significant effect on the removal of AO, MB, and Cd (II) in optimal conditions. The ZF-NPs was investigated successfully to remove AO, MB, and Cd (II) from environmental water samples. The results of this study showed that ZF-NPs can be used as a suitable adsorbent to remove AO, MB, and Cd (II) from aqueous solution.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3