Cuticle deposition duration in the uterus is correlated with eggshell cuticle quality in White Leghorn laying hens

Author:

Chen Xia,He Zhaoxiang,Li Xingzheng,Song Jianlou,Huang Mingyi,Shi Xuefeng,Li Xianyu,Li Junying,Xu Guiyun,Zheng Jiangxia

Abstract

AbstractThe cuticle formed in the uterus is the outermost layer as the first defense line of eggshell against microbial invasions in most avian species, and analyzing its genetic regulation and influencing factors are of great importance to egg biosecurity in poultry production worldwide. The current study compared the uterine transcriptome and proteome of laying hens producing eggs with good and poor cuticle quality (GC and PC, the top and tail of the cuticle quality distribution), and identified several genes involved with eggshell cuticle quality (ESCQ). Overall, transcriptomic analysis identified 53 differentially expressed genes (DEGs) between PC versus GC group hens, among which 25 were up-regulated and 28 were down-regulated. No differences were found in the uterine proteome. Several DEGs, including PTGDS, PLCG2, ADM and PRLR related to uterine functions and reproductive hormones, were validated by qPCR analysis. Egg quality measurements between GC and PC hens showed GC hens had longer laying interval between two consecutive ovipositions (25.64 ± 1.23 vs 24.94 ± 1.12 h) and thicker eggshell thickness (352.01 ± 23.04 vs 316.20 ± 30.58 μm) (P < 0.05). Apart from eggshell traits, other egg quality traits didn’t differ. The result demonstrated eggshell and cuticle deposition duration in the uterus is one of the major factors affecting ESCQ in laying hens. PTGDS, PLCG2, ADM and PRLR genes were discovered and might play crucial roles in cuticle deposition by regulating the uterine muscular activities and secretion function. The findings in the present study provide new insights into the genetic regulation of cuticle deposition in laying hens and establish a foundation for further investigations.

Funder

China Agriculture Research Systems

National Natural Science Foundation of China

Program for Changjiang Scholars and Innovative Research Team in University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3