Gauging the skin resident Leishmania parasites through a loop mediated isothermal amplification (LAMP) assay in post-kala-azar dermal leishmaniasis

Author:

Ghosh Prakash,Chowdhury Rajashree,Maruf Shomik,Picado Albert,Hossain Faria,Owen Sophie I.,Nath Rupen,Baker James,Hasnain Md Golam,Shomik Mohammad Sohel,Ghosh Debashis,Rashid Masud,Rashid Md. Utba,Sagar Soumik Kha,Rahat Md. Abu,Basher Ariful,Nath Proggananda,Edwards Thomas,Andrews Jason R.,Duthie Malcolm S.,de Souza Dziedzom K.,Adams Emily R.,Ndungu Joseph,Cruz Israel,Mondal Dinesh

Abstract

AbstractDespite the availability of highly sensitive polymerase chain reaction (PCR)-based methods, the dearth of remotely deployable diagnostic tools circumvents the early and accurate detection of individuals with post-kala-azar dermal leishmaniasis (PKDL). Here, we evaluate a design-locked loop-mediated isothermal amplification (LAMP) assay to diagnose PKDL. A total of 76 snip-skin samples collected from individuals with probable PKDL (clinical presentation and a positive rK39 rapid diagnostic test (RDT)) were assessed by microscopy, qPCR, and LAMP. An equal number of age and sex-matched healthy controls were included to determine the specificity of the LAMP assay. The LAMP assay with a Qiagen DNA extraction (Q-LAMP) showed a promising sensitivity of 72.37% (95% CI: 60.91–82.01%) for identifying the PKDL cases. LAMP assay sensitivity declined when the DNA was extracted using a boil-spin method. Q-qPCR showed 68.42% (56.75–78.61%) sensitivity, comparable to LAMP and with an excellent agreement, whereas the microscopy exhibited a weak sensitivity of 39.47% (28.44–51.35%). When microscopy and/or qPCR were considered the gold standard, Q-LAMP exhibited an elevated sensitivity of 89.7% (95% CI: 78.83–96.11%) for detection of PKDL cases and Bayesian latent class modeling substantiated the excellent sensitivity of the assay. All healthy controls were found to be negative. Notwithstanding the optimum efficiency of the LAMP assay towards the detection of PKDL cases, further optimization of the boil-spin method is warranted to permit remote use of the assay.

Funder

Federal Ministry of Education and Research, Germany

Wellcome Trust Seed funding

MRC-DTP

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3