Author:
Ghosh Prakash,Chowdhury Rajashree,Maruf Shomik,Picado Albert,Hossain Faria,Owen Sophie I.,Nath Rupen,Baker James,Hasnain Md Golam,Shomik Mohammad Sohel,Ghosh Debashis,Rashid Masud,Rashid Md. Utba,Sagar Soumik Kha,Rahat Md. Abu,Basher Ariful,Nath Proggananda,Edwards Thomas,Andrews Jason R.,Duthie Malcolm S.,de Souza Dziedzom K.,Adams Emily R.,Ndungu Joseph,Cruz Israel,Mondal Dinesh
Abstract
AbstractDespite the availability of highly sensitive polymerase chain reaction (PCR)-based methods, the dearth of remotely deployable diagnostic tools circumvents the early and accurate detection of individuals with post-kala-azar dermal leishmaniasis (PKDL). Here, we evaluate a design-locked loop-mediated isothermal amplification (LAMP) assay to diagnose PKDL. A total of 76 snip-skin samples collected from individuals with probable PKDL (clinical presentation and a positive rK39 rapid diagnostic test (RDT)) were assessed by microscopy, qPCR, and LAMP. An equal number of age and sex-matched healthy controls were included to determine the specificity of the LAMP assay. The LAMP assay with a Qiagen DNA extraction (Q-LAMP) showed a promising sensitivity of 72.37% (95% CI: 60.91–82.01%) for identifying the PKDL cases. LAMP assay sensitivity declined when the DNA was extracted using a boil-spin method. Q-qPCR showed 68.42% (56.75–78.61%) sensitivity, comparable to LAMP and with an excellent agreement, whereas the microscopy exhibited a weak sensitivity of 39.47% (28.44–51.35%). When microscopy and/or qPCR were considered the gold standard, Q-LAMP exhibited an elevated sensitivity of 89.7% (95% CI: 78.83–96.11%) for detection of PKDL cases and Bayesian latent class modeling substantiated the excellent sensitivity of the assay. All healthy controls were found to be negative. Notwithstanding the optimum efficiency of the LAMP assay towards the detection of PKDL cases, further optimization of the boil-spin method is warranted to permit remote use of the assay.
Funder
Federal Ministry of Education and Research, Germany
Wellcome Trust Seed funding
MRC-DTP
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献