Signatures of local adaptation in the spatial genetic structure of the ascidian Pyura chilensis along the southeast Pacific coast

Author:

Segovia Nicolás I.,González-Wevar Claudio A.,Haye Pilar A.

Abstract

AbstractThe highly heterogeneous Humboldt Current System (HCS) and the 30°S transition zone on the southeast Pacific coast, represent an ideal scenario to test the influence of the environment on the spatial genomic structure in marine near-shore benthic organisms. In this study, we used seascape genomic tools to evaluate the genetic structure of the commercially important ascidian Pyura chilensis, a species that exhibits a low larval transport potential but high anthropogenic dispersal. A recent study in this species recorded significant genetic differentiation across a transition zone around 30°S in putatively adaptive SNPs, but not in neutral ones, suggesting an important role of environmental heterogeneity in driving genetic structure. Here, we aim to understand genomic-oceanographic associations in P. chilensis along the Southeastern Pacific coast using two combined seascape genomic approaches. Using 149 individuals from five locations along the HCS, a total of 2,902 SNPs were obtained by Genotyping-By-Sequencing, of which 29–585 were putatively adaptive loci, depending on the method used for detection. In adaptive loci, spatial genetic structure was better correlated with environmental differences along the study area (mainly to Sea Surface Temperature, upwelling-associated variables and productivity) than to the geographic distance between sites. Additionally, results consistently showed the presence of two groups, located north and south of 30°S, which suggest that local adaptation processes seem to allow the maintenance of genomic differentiation and the spatial genomic structure of the species across the 30°S biogeographic transition zone of the Humboldt Current System, overriding the homogenizing effects of gene flow.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3