Female tilapia, Oreochromis sp. mobilised energy differently for growth and reproduction according to living environment

Author:

Razali Ros Suhaida,Rahmah Sharifah,Shirly-Lim Yu Ling,Ghaffar Mazlan Abd,Mazelan Suhairi,Jalilah Mohamad,Lim Leong-Seng,Chang Yu Mei,Liang Li Qun,Chen Young-MaoORCID,Liew Hon JungORCID

Abstract

AbstractThis study was conducted to investigate the energy mobilisation preference and ionoregulation pattern of female tilapia, Oreochromis sp. living in different environments. Three different treatments of tilapia as physiology compromising model were compared; tilapia cultured in recirculating aquaculture system (RAS as Treatment I—RAS), tilapia cultured in open water cage (Treatment II—Cage) and tilapia transferred from cage and cultured in RAS (Treatment III—Compensation). Results revealed that tilapia from Treatment I and III mobilised lipid to support gonadogenesis, whilst Treatment II tilapia mobilised glycogen as primary energy for daily exercise activity and reserved protein for growth. The gills and kidney Na+/K+ ATPase (NKA) activities remained relatively stable to maintain homeostasis with a stable Na+ and K+ levels. As a remark, this study revealed that tilapia strategized their energy mobilisation preference in accessing glycogen as an easy energy to support exercise metabolism and protein somatogenesis in cage culture condition, while tilapia cultured in RAS mobilised lipid for gonadagenesis purposes.

Funder

Ministry of Higher Education, Malaysia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3