Trizma as an eco-friendly efficient inhibitor for the acidic corrosion of steel: experimental and computational studies

Author:

Abd-El-Nabey B. A.ORCID,El-Housseiny S.ORCID,Abd-El-Fatah M. A.ORCID

Abstract

AbstractThe inhibition characteristics of Trizma for corrosion of steel in 1 M HCl was investigated using the weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy techniques and the surface techniques XRD,SEM and EDX. The potentiodynamic results indicated that Trizma act as a mixed type inhibitor for steel in 1 M HCl giving efficiently 93.7% percent inhibition for 1 × 10–2 mol/L. The electrochemical impedance spectroscopy results showed an increase in Rct values and decrease in the value of Cdl with increasing the concentration of Trizma indicating that the presence of Trizma in the solution retards the steel corrosion due to the adsorption of its molecules at the steel/solution interface. The XRD and SEM results indicated that the surface of the steel contains Trizma molecules. The DFT method was investigated to correlate the molecular properties of the studied Trizma with the experimental inhibition efficiency. Langmuir, Flory–Huggins isotherm, and the Kinetic–thermodynamic model were used to fit the corrosion inhibition data of Trizma. The results indicated that the Langmuir isotherm does not fit with the experimental results due mainly to the non-ideal adsorption of its molecules at the steel/solution interface. However, Flory–Huggins isotherms, and the Kinetic–thermodynamic model are applicable and showed that the adsorption process of Trizma on the steel surface is cooperative (Chemical–Physical).

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3