Deep time-delay Markov network for prediction and modeling the stress and emotions state transition

Author:

Prasetio Barlian Henryranu,Tamura Hiroki,Tanno Koichi

Abstract

AbstractTo recognize stress and emotion, most of the existing methods only observe and analyze speech patterns from present-time features. However, an emotion (especially for stress) can change because it was triggered by an event while speaking. To address this issue, we propose a novel method for predicting stress and emotions by analyzing prior emotional states. We named this method the deep time-delay Markov network (DTMN). Structurally, the proposed DTMN contains a hidden Markov model (HMM) and a time-delay neural network (TDNN). We evaluated the effectiveness of the proposed DTMN by comparing it with several state transition methods in predicting an emotional state from time-series (sequences) speech data of the SUSAS dataset. The experimental results show that the proposed DTMN can accurately predict present emotional states by outperforming the baseline systems in terms of the prediction error rate (PER). We then modeled the emotional state transition using a finite Markov chain based on the prediction result. We also conducted an ablation experiment to observe the effect of different HMM values and TDNN parameters on the prediction result and the computational training time of the proposed DTMN.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3