Isolation of dissolved organic matter from aqueous solution by precipitation with FeCl3: mechanisms and significance in environmental perspectives

Author:

Zhang Jie,Mostofa Khan M. G.,Yang Xuemei,Mohinuzzaman Mohammad,Liu Cong-Qiang,Senesi Nicola,Senesi Giorgio S.,Sparks Donald L.,Teng H. Henry,Li Longlong,Yuan Jie,Li Si-Liang

Abstract

AbstractFerric ions can bind strongly with dissolved organic matter (DOM), including humic acids (HA), fulvic acids (FA), and protein-like substances, whereas isolation of Fe-DOM precipitates (Fe-DOMP) and their biochemical characteristics remain unclear. In this work FeCl3 was used to isolate DOM components from various sources, including river, lake, soil, cow dung, and standard tryptophan and tyrosine, through precipitation at pH 7.5–8.5. The Fe-DOMP contribute to total DOM by approximately 38.6–93.8% of FA, 76.2% of HA and 25.0–30.4% of tryptophan and tyrosine, whilst fluorescence spectra allowed to monitor/discriminate the various DOM fractions in the samples. The relative intensity of the main infrared peaks such as 3406‒3383 cm−1 (aromatic OH), 1689‒1635 cm−1 (‒COOH), 1523–1504 cm−1 (amide) and 1176–1033 cm−1 (‒S=O) show either to decline or disappear in Fe‒DOMP. These results suggest the occurrence of Fe bonds with various functional groups of DOM, indicating the formation of π–d electron bonding systems of different strengths in Fe‒DOMP. The novel method used for isolation of Fe-DOMP shows promising in opening a new frontier both at laboratory and industrial purposes. Furthermore, results obtained may provide a better understanding of metal–organic complexes involved in the regulation of the long-term stabilization/sequestration of DOM in soils and waters.

Funder

Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3