Author:
Chaucheyras-Durand Frédérique,Ameilbonne Aurélie,Auffret Pauline,Bernard Mickaël,Mialon Marie-Madeleine,Dunière Lysiane,Forano Evelyne
Abstract
AbstractRumen microbiota is of paramount importance for ruminant digestion efficiency as the microbial fermentations supply the host animal with essential sources of energy and nitrogen. Early separation of newborns from the dam and distribution of artificial milk (Artificial Milking System or AMS) could impair rumen microbial colonization, which would not only affect rumen function but also have possible negative effects on hindgut homeostasis, and impact animal health and performance. In this study, we monitored microbial communities in the rumen and the feces of 16 lambs separated from their dams from 12 h of age and artificially fed with milk replacer and starter feed from d8, in absence or presence of a combination of the live yeast Saccharomyces cerevisiae CNCM I-1077 and selected yeast metabolites. Microbial groups and targeted bacterial species were quantified by qPCR and microbial diversity and composition were assessed by 16S rDNA amplicon sequencing in samples collected from birth to 2 months of age. The fibrolytic potential of the rumen microbiota was analyzed with a DNA microarray targeting genes coding for 8 glycoside hydrolase (GH) families. In Control lambs, poor establishment of fibrolytic communities was observed. Microbial composition shifted as the lambs aged. The live yeast supplement induced significant changes in relative abundances of a few bacterial OTUs across time in the rumen samples, among which some involved in crucial rumen function, and favored establishment of Trichostomatia and Neocallimastigaceae eukaryotic families. The supplemented lambs also harbored greater abundances in Fibrobacter succinogenes after weaning. Microarray data indicated that key cellulase and hemicellulase encoding-genes were present from early age in the rumen and that in the Supplemented lambs, a greater proportion of hemicellulase genes was present. Moreover, a higher proportion of GH genes from ciliate protozoa and fungi was found in the rumen of those animals. This yeast combination improved microbial colonization in the maturing rumen, with a potentially more specialized ecosystem towards efficient fiber degradation, which suggests a possible positive impact on lamb gut development and digestive efficiency.
Publisher
Springer Science and Business Media LLC
Reference70 articles.
1. Yeoman, C. J. et al. Biogeographical Differences in the Influence of Maternal Microbial Sources on the Early Successional Development of the Bovine Neonatal Gastrointestinal tract. Sci. Rep. 8 (2018).
2. Meale, S. J., Chaucheyras-Durand, F., Berends, H., Guan, L. L. & Steele, M. A. From pre- to postweaning: Transformation of the young calf’s gastrointestinal tract. J. Dairy Sci. 100, 5984–5995 (2017).
3. Guzman, C. E., Bereza-Malcolm, L. T., De Groef, B. & Franks, A. E. Presence of Selected Methanogens, Fibrolytic Bacteria, and Proteobacteria in the Gastrointestinal Tract of Neonatal Dairy Calves from Birth to 72 Hours. PLoS ONE 10 (2015).
4. Wang, Z. et al. Changes in Metabolically Active Bacterial Community during Rumen Development, and Their Alteration by Rhubarb Root Powder Revealed by 16S rRNA Amplicon Sequencing. Front. Microbiol. 8, 159 (2017).
5. Li, R. W., Connor, E. E., Li, C., Baldwin Vi, R. L. & Sparks, M. E. Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ. Microbiol. 14, 129–139 (2012).
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献