Improved target detection method for space-based optoelectronic systems

Author:

Zhu Rui,Fu Qiang,Liu Nan,Zhao Feng,Wen Guanyu,Li Yingchao,Jiang Huilin

Abstract

AbstractThe detection of faint and small targets by space-based surveillance systems is difficult owing to the long distances, low energies, high speeds, high false alarm rates, and low algorithmic efficiencies involved in the process. To improve space object detection and help prevent collisions with critical facilities such as satellites, this study proposes an improved method for the detection of faint and small space-based targets. The proposed method consists of two components: star atlas preprocessing and space-based target detection. The star atlas preprocessing step applies multi-exposure image pyramidal weighted fusion to the original image containing the faint and small space-based target. After obtaining the image pyramidal weighted fusion result atlas, the algorithm employs threshold segmentation to improve the overall image clarity, highlight image details, and provide additional information for target detection. The detection of targets partially relies on the local symmetry of the image. Accordingly, a diffusion function describing the local symmetry is established to precisely locate stars by measuring the symmetry factor in a small area surrounding each pixel in the star atlas. This effectively removes the background stars while retaining high-definition and high-contrast images. The efficacy of the algorithm is validated using simulated datasets consisting of space-based and real images. The results demonstrate that the proposed technique improves the applicability of the multistage hypothesis testing (MHT) method in the context of a complex space environment, thus improving the performance of the space-based electro-optical detection system to better catalogue, identify, and track space targets.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3