Author:
Kim Yong-Jin,Kweon I Se,Min Kwan Hong,Lee Sang Hee,Choi Sungjin,Jeong Kyung Taek,Park Sungeun,Song Hee-eun,Kang Min Gu,Kim Ka-Hyun
Abstract
AbstractTunnel oxide passivated contacts (TOPCon) embedding a thin oxide layer between polysilicon and base crystalline silicon have shown great potential in the development of solar cells with high conversion efficiency. In this study, we investigate the formation mechanism of hole-carrier selective contacts with TOPCon structure on n-type crystalline silicon wafers. We explore the thermal annealing effects on the passivation properties in terms of the stability of the thermally-formed silicon oxide layer and the deposition conditions of boron-doped polysilicon. To understand the underlying principle of the passivation properties, the active dopant in-diffusion profiles following the thermal annealing are investigated, combined with an analysis of the microscopic structure. Based on PC1D simulation, we find that shallow in-diffusion of boron across a robust tunnel oxide forms a p–n junction and improves the passivation properties. Our findings can provide a pathway to understanding and designing high-quality hole-selective contacts based on the TOPCon structure for the development of highly efficient crystalline silicon solar cells.
Funder
Korea Institute of Energy Research
Korea Institute of Energy Technology Evaluation and Planning
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献