Improvement in energy performance from the construction of inlet guide vane and diffuser vane geometries in an axial-flow pump

Author:

Nguyen Duc-Anh,Dinh Cong-Truong,Kim Jin-Hyuk

Abstract

AbstractAdvanced inlet guide vane (IGV) and diffuser vane (DV) geometries were constructed in an effort to increase the energy performance of an axial-flow pump at the best efficiency point (BEP). DV setting angles were also investigated to increase energy performance at the off-design points. By integrating the advantages of an adjustable IGV, combinations of adjustable IGV and DV geometries were constructed and thoroughly analyzed by way of energy loss. The asymmetrical geometry of the IGV, upgraded through the use of a hydrofoil profile, resulted in higher hydraulic performance compared to that of the reference model. The efficiency and total head at the BEP increased significantly with the implementation of the new DV, by 1.456% and 5.756% over those of the reference model, respectively. Using the new DV reduced the unsteady turbulent flow behind the trailing edge of the DV under all flow rate conditions, resulting in a reduction in vibration and noise. The positive setting angles of the DV increased the energy performance in the high-flow-rate region, whereas the negative DV setting angles produced a good performance in the low-flow-rate region. Combining an adjustable IGV with an adjustable DV model resulted in a significant increase in the total head, with more optimal energy performance provided by the positive IGV setting angles. At the BEP and under high-flow-rate conditions, the low-velocity zone is closely related to high entropy generation. Furthermore, these high-entropy generation regions follow the trajectory of the low-velocity zones. However, the low-velocity zone is not strongly associated with the high-entropy generation region when operating under low-flow-rate conditions.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3