Multitask fMRI and machine learning approach improve prediction of differential brain activity pattern in patients with insomnia disorder

Author:

Lee Mi Hyun,Kim Nambeom,Yoo Jaeeun,Kim Hang-Keun,Son Young-Don,Kim Young-Bo,Oh Seong Min,Kim Soohyun,Lee Hayoung,Jeon Jeong Eun,Lee Yu Jin

Abstract

AbstractWe investigated the differential spatial covariance pattern of blood oxygen level-dependent (BOLD) responses to single-task and multitask functional magnetic resonance imaging (fMRI) between patients with psychophysiological insomnia (PI) and healthy controls (HCs), and evaluated features generated by principal component analysis (PCA) for discrimination of PI from HC, compared to features generated from BOLD responses to single-task fMRI using machine learning methods. In 19 patients with PI and 21 HCs, the mean beta value for each region of interest (ROIbval) was calculated with three contrast images (i.e., sleep-related picture, sleep-related sound, and Stroop stimuli). We performed discrimination analysis and compared with features generated from BOLD responses to single-task fMRI. We applied support vector machine analysis with a least absolute shrinkage and selection operator to evaluate five performance metrics: accuracy, recall, precision, specificity, and F2. Principal component features showed the best classification performance in all aspects of metrics compared to BOLD response to single-task fMRI. Bilateral inferior frontal gyrus (orbital), right calcarine cortex, right lingual gyrus, left inferior occipital gyrus, and left inferior temporal gyrus were identified as the most salient areas by feature selection. Our approach showed better performance in discriminating patients with PI from HCs, compared to single-task fMRI.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3