Inflammatory landscape in Xeroderma pigmentosum patients with cutaneous melanoma

Author:

Chikhaoui Asma,Jones Meriem,Režen Tadeja,Ben Ahmed Melika,Naouali Chokri,Komel Radovan,Zghal Mohamed,Boubaker Samir,Abdelhak Sonia,Yacoub-Youssef HoudaORCID

Abstract

AbstractXeroderma pigmentosum (XP) is a DNA repair disease that predisposes to early skin cancers as cutaneous melanoma. Melanoma microenvironment contains inflammatory mediators, which would be interesting biomarkers for the prognosis or for the identification of novel therapeutic targets. We used a PCR array to evaluate the transcriptional pattern of 84 inflammatory genes in melanoma tumors obtained from XP patients (XP-Mel) and in sporadic melanoma (SP-Mel) compared to healthy skin. Commonly expressed inflammatory genes were further explored via GTEx and GEPIA databases. The differentially expressed inflammatory genes in XP were compared to their expression in skin exposed to UVs, and evaluated on the basis of the overall survival outcomes of patients with melanoma. Monocyte subsets of patients with SP-Mel, XP and healthy donors were also assessed. PCR array data revealed that 34 inflammatory genes were under-expressed in XP-Mel compared to SP-Mel. Differentially expressed genes that were common in XP-Mel and SP-Mel were correlated with the transcriptomic datasets from GEPIA and GTEx and highlighted the implication of KLK1 and IL8 in the tumorigenesis. We showed also that in XP-Mel tumors, there was an overexpression of KLK6 and KLK10 genes, which seems to be associated with a bad survival rate. As for the innate immunity, we observed a decrease of intermediate monocytes in patients with SP-Mel and in XP. We highlight an alteration in the immune response in XP patients. We identified candidate biomarkers involved in the tumorigenesis, and in the survival of patients with melanoma. Intermediate monocyte’s in patients at risk could be a prognostic biomarker for melanoma outcome.

Funder

The Slovenian Research Agency

The "Projet Collaboratif Interne"

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3