The first use of a photogrammetry drone to estimate population abundance and predict age structure of threatened Sumatran elephants

Author:

Rahman Dede Aulia,Herliansyah Riki,Subhan Beginer,Hutasoit Donal,Imron Muhammad Ali,Kurniawan Didik Bangkit,Sriyanto Teguh,Wijayanto Raden Danang,Fikriansyah Muhammad Hilal,Siregar Ahmad Faisal,Santoso Nyoto

Abstract

AbstractWildlife monitoring in tropical rainforests poses additional challenges due to species often being elusive, cryptic, faintly colored, and preferring concealable, or difficult to access habitats. Unmanned aerial vehicles (UAVs) prove promising for wildlife surveys in different ecosystems in tropical forests and can be crucial in conserving inaccessible biodiverse areas and their associated species. Traditional surveys that involve infiltrating animal habitats could adversely affect the habits and behavior of elusive and cryptic species in response to human presence. Moreover, collecting data through traditional surveys to simultaneously estimate the abundance and demographic rates of communities of species is often prohibitively time-intensive and expensive. This study assesses the scope of drones to non-invasively access the Bukit Tigapuluh Landscape (BTL) in Riau-Jambi, Indonesia, and detect individual elephants of interest. A rotary-wing quadcopter with a vision-based sensor was tested to estimate the elephant population size and age structure. We developed hierarchical modeling and deep learning CNN to estimate elephant abundance and age structure. Drones successfully observed 96 distinct individuals at 8 locations out of 11 sampling areas. We obtained an estimate of the elephant population of 151 individuals (95% CI [124, 179]) within the study area and predicted more adult animals than subadults and juvenile individuals in the population. Our calculations may serve as a vital spark for innovation for future UAV survey designs in large areas with complex topographies while reducing operational effort.

Funder

Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi

KfW (Kreditanstalt fuWiederaufbau) co-funded Forest Programme II (FP II) for Biodiversity Conservation and Integrated Watershed Management Development in the Indonesian-German REDD+ Programme

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference90 articles.

1. Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F. & Hansen, M. C. Primary Forest cover loss in Indonesia over 2000–2012. Nat. Clim. Change. 4, 730–735. https://doi.org/10.1038/nclimate2277 (2014).

2. Austin, K. G., Schwantes, A., Gu, Y. & Kasibhatla, P. S. What causes deforestation in Indonesia?. Environ. Res. Lett. 14(2), 024007. https://doi.org/10.1088/1748-9326/aaf6db (2019).

3. Uryu, Y. et al. Deforestation, Forest Degradation, Biodiversity Loss and CO2 Emissions in Riau, Sumatra, Indonesia. WWF Indonesia Technical Report, Jakarta, Indonesia (2008).

4. Ministry of Environment and Forestry. Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia No. P.106/MENLHK/SETJEN/KUM.1/12/2018 Tentang Perubahan Kedua Atas Peraturan Menteri Lingkungan Hidup dan Kehutanan No. P.20/MENLHK/SETJEN/KUM.1/6/2018 Tentang Jenis Tumbuhan dan Satwa Yang Dilindungi (Sekretariat Kabinet, 2018).

5. Gopala, A. et al. Elephas maximus ssp. Sumatranus. The IUCN Red List of Threatened Species 2011: E.T199856A9129626 (IUCN, 2011).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inferring dolphin population status: using unoccupied aerial systems to quantify age‐structure;Animal Conservation;2024-08-13

2. Towards Estimation of 3D Poses and Shapes of Animals from Oblique Drone Imagery;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2024-06-11

3. Estimating Total Length of Partially Submerged Crocodylians from Drone Imagery;Drones;2024-03-21

4. A Systematic Review of the UAV Technology Usage in ASEAN;IEEE Open Journal of Vehicular Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3