Colorless and transparent polyimide nanocomposites using organically modified montmorillonite and mica

Author:

Park Sanghyeon,Na Changyub,Kang Sung-Soo,Kwac Lee Ku,Kim Hong Gun,Chang Jin-Hae

Abstract

AbstractIn this study, we introduce a method for replacing the glass used in existing display electronic materials, lighting, and solar cells by synthesizing a colorless and transparent polyimide (CPI) film with excellent mechanical properties and thermal stability using a combination of new monomers. Poly(amic acid) (PAA) was synthesized using dianhydride 4,4′-biphthalic anhydride (BPA) and diamine 2,2-bis(3-amino-4-hydroxyphenyl) hexafluoropropane (AHP). Various contents of organically modified montmorillonite (MMT) and mica were dispersed in PAA solution through solution intercalation, and then CPI hybrid films were prepared through multi-step thermal imidization. The organoclays synthesized to prepare CPI hybrid films were Cloisite 93A (CS-MMT) and hexadimethrine-mica (HM-Mica) based on MMT and mica, respectively. In particular, the diamine monomer AHP containing a –OH group was selected to increase the dispersibility and compatibility between the hydrophilic clays and the CPI matrix. To demonstrate the characteristics of CPI, the overall polymer structure was bent and a strong electron withdrawing –CF3 group was used as a substituent. The thermomechanical properties, morphology of clay dispersion, and optical transparency of the CPI hybrid films were investigated and compared according to the type and content of organoclays. Two types of organoclays, CS-MMT and HM-Mica, were dispersed in a CPI matrix at 1 to 7 wt%, respectively. In electron microscopy, most of the clays were uniformly dispersed in a plate-like shape of less than 20 nm at a certain critical content of the two types of organoclays, but agglomeration of the clays was observed when the content was higher than the critical content. Hybrids using HM-Mica had better thermomechanical properties and hybrids containing CS-MMT had better optical transparency.

Funder

National Research Foundation of Korea (NRF) funded by the Ministry of Education

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3