Speculative computing for AAFM solutions in large-scale product configurations

Author:

Vidal-Silva Cristian,Duarte Vannessa,Cárdenas-Cobo Jesennia,Veas Iván

Abstract

AbstractParallel computing is a current algorithmic approach to looking for efficient solutions; that is, to define a set of processes in charge of performing at the same time the same task. Advances in hardware permit the massification of accessibility to and applications of parallel computing. Nonetheless, some algorithms include steps that require or depend on the results of other steps that cannot be parallelized. Speculative computing allows parallelizing those tasks and reviewing different execution flows, which can involve executing invalid steps. Speculative computing solutions should reduce those invalid flows. Product configuration refers to selecting features from a set of available options respecting some configuration constraints; a not complex task for small configurations and models, but a complex one for large-scale scenarios. This article exemplifies a videogame product line feature model and a few configurations, valid and non-valid, respectively. Configuring products of large-scale feature models is a complex and time-demanding task requiring algorithmic solutions. Hence, parallel solutions are highly desired to assist the feature model product configuration tasks. Existing solutions follow a sequential computing approach and include steps that depend on others that cannot be parallelized at all, where the speculative computing approach is necessary. This article describes traditional sequential solutions for conflict detection and diagnosis, two relevant tasks in the automated analysis of feature models, and how to define their speculative parallel version, highlighting their computing improvements. Given the current parallel computing world, we remark on the advantages and current applicability of speculative computing for producing faster algorithmic solutions.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3