Double-slit holography—a single-shot lensless imaging technique

Author:

Wicki Flavio,Latychevskaia TatianaORCID

Abstract

AbstractIn this study, we propose a new method for single-shot, high-resolution lensless imaging called double-slit holography. This technique combines the properties of in-line and off-axis holography in one single-shot measurement using the simplest double-slit device: a plate with two apertures. In double-slit holography, a plane wave illuminates the two apertures giving rise to two spherical waves. While diffraction of one spherical wave from a sample positioned behind the first aperture (the object aperture) provides the object wave, the other spherical wave diffracted from the second (reference) aperture provides the reference wave. The resulting interference pattern in the far-field (hologram) combines the properties of an in-line (or Gabor-type) hologram and an off-axis hologram due to the added reference wave from the second aperture. Both the object and reference waves have the same intensity, which ensures high contrast of the hologram. Due to the off-axis scheme, the amplitude and phase distributions of the sample can be directly reconstructed from the hologram, and the twin image can be easily separated. Due to the object wave being the same as in-line holography with a spherical wave, imaging at different magnifications is similarly done by simply adjusting the aperture-to-sample distance. The resolution of the reconstructed object is given by the numerical aperture of the optical setup and the diameter of the reference aperture. It is shown both by theory and simulations that the resolution of the reconstructed object depends on the diameter of the reference wave aperture but does not depend on the diameter of the object aperture. Light optical proof-of-concept experiments are provided. The proposed method can be particularly practical for X-rays, where optical elements such as beam splitters are not available and conventional off-axis holography schemes cannot be realised.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3