An empirical demonstration of the effect of study design on density estimations

Author:

Nawaz Muhammad Ali,Khan Barkat Ullah,Mahmood Amer,Younas Muhammad,Din Jaffar ud,Sutherland ChrisORCID

Abstract

AbstractThe simultaneous development of technology (e.g. camera traps) and statistical methods, particularly spatially capture–recapture (SCR), has improved monitoring of large mammals in recent years. SCR estimates are known to be sensitive to sampling design, yet existing recommendations about trap spacing and coverage are often not achieved, particularly for sampling wide-ranging and rare species in landscapes that allow for limited accessibility. Consequently, most camera trap studies on large wide-ranging carnivores relies on convenience or judgmental sampling, and often yields compromised results. This study attempts to highlight the importance of carefully considered sampling design for large carnivores that, because of low densities and elusive behavior, are challenging to monitor. As a motivating example, we use two years of snow leopard camera trapping data from the same areas in the high mountains of Pakistan but with vastly different camera configurations, to demonstrate that estimates of density and space use are indeed sensitive to the trapping array. A compact design, one in which cameras were placed much closer together than generally recommended and therefore have lower spatial coverage, resulted in fewer individuals observed, but more recaptures, and estimates of density and space use were inconsistent with expectations for the region. In contrast, a diffuse design, one with larger spacing and spatial coverage and more consistent with general recommendations, detected more individuals, had fewer recaptures, but generated estimates of density and space use that were in line with expectations. Researchers often opt for compact camera configurations while monitoring wide-ranging and rare species, in an attempt to maximize the encounter probabilities. We empirically demonstrate the potential for biases when sampling a small area approximately the size of a single home range—this arises from exposing fewer individuals than deemed sufficient for estimation. The smaller trapping array may also underestimate density by significantly inflating $$\sigma$$ σ . On the other hand, larger trapping array with fewer detectors and poor design induces uncertainties in the estimates. We conclude that existing design recommendations have limited utility on practical grounds for devising feasible sampling designs for large ranging species, and more research on SCR designs is required that allows for integrating biological and habitat traits of large carnivores in sampling framework. We also suggest that caution should be exercised when there is a reliance on convenience sampling.

Funder

Snow Leopard Trust

Pakistan Snow Leopard and Ecosystem Protection Program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3