Energy absorbed from double quantum dot-metal nanoparticle hybrid system

Author:

Akram Haneen,Abdullah Muwaffaq,Al-Khursan Amin H.

Abstract

AbstractThis work proposes the double quantum dot (DQD)-metal nanoparticle (MNP) hybrid system for a high energy absorption rate. The structure is modeled using density matrix equations that consider the interaction between excitons and surface plasmons. The wetting layer (WL)-DQD transitions are considered, and the orthogonalized plane wave (OPW) between these transitions is considered. The DQD energy states and momentum calculations with OPW are the figure of merit recognizing this DQD-MNP work. The results show that at the high pump and probe application, the total absorption rate $$({Q}_{tot})$$ ( Q tot ) of the DQD-MNP hybrid system is increased by reducing the distance between DQD-MNP. The high $${Q}_{tot}$$ Q tot obtained may relate to two reasons: first, the WL washes out modes other than the condensated main mode. Second, the high flexibility of manipulating DQD states compared to QD states results in more optical properties for DQD. The $${Q}_{DQD}$$ Q DQD is increased at a small MNP radius on the contrary to the $${Q}_{MNP}$$ Q MNP which is increased at a wider MNP radius. Under high tunneling, a broader blue shift in the $${Q}_{tot}$$ Q tot due to the destructive interference between fields is seen and the synchronization between $${Q}_{MNP}$$ Q MNP and $${Q}_{DQD}$$ Q DQD is destroyed. $${Q}_{tot}$$ Q tot for the DQD-MNP is increased by six orders while $${Q}_{DQD}$$ Q DQD is by eight orders compared to the single QD-MNP hybrid system. The high absorption rate of the DQD-MNP hybrid system comes from the transition possibilities and flexibility of choosing the transitions in the DQD system, which strengthens the transitions and increases the linear and nonlinear optical properties. This will make the DQD-MNP hybrid systems preferable to QD-MNP systems.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3