Temporal visitation patterns of points of interest in cities on a planetary scale: a network science and machine learning approach

Author:

Betancourt Francisco,Riascos Alejandro P.,Mateos José L.

Abstract

AbstractWe aim to study the temporal patterns of activity in points of interest of cities around the world. In order to do so, we use the data provided by the online location-based social network Foursquare, where users make check-ins that indicate points of interest in the city. The data set comprises more than 90 million check-ins in 632 cities of 87 countries in 5 continents. We analyzed more than 11 million points of interest including all sorts of places: airports, restaurants, parks, hospitals, and many others. With this information, we obtained spatial and temporal patterns of activities for each city. We quantify similarities and differences of these patterns for all the cities involved and construct a network connecting pairs of cities. The links of this network indicate the similarity of temporal visitation patterns of points of interest between cities and is quantified with the Kullback-Leibler divergence between two distributions. Then, we obtained the community structure of this network and the geographic distribution of these communities worldwide. For comparison, we also use a Machine Learning algorithm—unsupervised agglomerative clustering—to obtain clusters or communities of cities with similar patterns. The main result is that both approaches give the same classification of five communities belonging to five different continents worldwide. This suggests that temporal patterns of activity can be universal, with some geographical, historical, and cultural variations, on a planetary scale.

Funder

Consejo Nacional de Ciencia y Tecnología

PAPIIT-UNAM

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3