Biometric and refractive changes following the monocular application of peripheral myopic defocus using a novel augmented-reality optical system in adults

Author:

Kubota Ryo,Joshi Nabin R.,Fitzgerald Tara J.,Samandarova Inna,Oliva Maksud,Selenow Arkady,Gupta Amitava,Ali Steven,Mitchell G. Lynn,Chun Robert,Ciuffreda Kenneth J.

Abstract

AbstractThe prevalence of myopia is growing at an alarming rate and is associated with axial elongation of the eye. The cause of this undesirable physiological change involves multiple factors. When the magnitude of myopia approaches high levels, this accompanying mechanical effect increases the risk of developing other clinical conditions associated with permanent vision loss. Prior work has investigated how we may halt or reverse this process of axial elongation associated with myopic progression when we expose the eye to a peripheral myopic defocus stimulus. Specifically, the known, short-term response to myopic defocus stimulation is promising and demonstrates the possibility of establishing more permanent effects by regulating the axial length of the eye with specific defocus stimulation. However, how to directly convert these known, short-term effects into more long-term, permanent changes to effectively prevent these unfavourable physiological and refractive changes over time is yet to be understood. Here, we show for the first time that we can produce sustained, long-term reductions in axial length and refractive endpoints with cumulative short-term exposure to specific myopic defocus stimuli using a novel optical design that incorporates an augmented reality optical system. We believe that this technology will have the potential to improve the quality of vision in mankind.

Funder

Kubota Vision Inc.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3