Effect of physical parameters and temperature on the piezo-electric jetting behaviour of UV-curable photochromic inks

Author:

Seipel Sina,Yu Junchun,Nierstrasz Vincent A.

Abstract

Abstract Although resource-efficient processes like inkjet printing have a large potential to foster the development of smart and functional textiles, one bottleneck still is the development of functional inks. To make inkjet printing and UV curing given production techniques for smart and functional specialty products, e.g. photochromic textiles, deepened knowledge about the development, rheological behavior and jetting behavior of functional ink is needed. This paper focuses on the formulation and performance of UV-responsive and UV-curable inkjet inks, which are based on photochromic dyes and their application to produce UV-responsive textiles. Two commercial photochromic dyes—Reversacol Ruby Red (RR) and Sea Green (SG), which represent dyes of the naphthopyran and spirooxazine class, respectively, have been used to develop the inks. The photochromic inks are characterized according to their physical–chemical and rheological properties in respect to temperature. The influence of temperature on the drop formation of the inks in an industrial print head is analyzed using a high-speed camera, which reveals important information regarding challenges in ink jettability. It was found that the dye structure and type used in the ink can influence the jetting behavior of photochromic UV-curable ink. More pronounced temperature sensitivity of dyes can increase the temperature-related effects of drop formation as was observed for SG ink. The printability of the RR and SG inks is framed and underpinned by theoretical calculations of the Z number. Discrepancies are observed and discussed between existing theory of ink jettability and visual evaluation of the photochromic ink.

Funder

University of Boras

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3