A multi-element flame retardant containing boron and double-bond structure for enhancing mechanical properties and flame retardancy of epoxy resins

Author:

Zheng Penglun,Zhao Haihan,Li Junwei,Liu Quanyi,Zhang Jian,Wu Wencai

Abstract

AbstractA multi-element synergistic flame retardant with double-bond structure was synthesized and added to epoxy resin (EP) to obtain EP composites with high flame retardant and mechanical properties. The study demonstrated that the DOPO-KhCPA-5 composite, containing 5 wt% of DOPO, exhibits the limiting oxygen index (LOI) value of 32%, indicating a high resistance to combustion. Additionally, it successfully meets the UL-94 V-0 grade, indicating excellent self-extinguishing properties. The DOPO-KhCPA-5 compound exhibited a 48.7% decrease in peak heat release rate (PHRR) and a 7.2% decrease in total heat release (THR) compared to pure EP. The inclusion of double-bonded architectures in the DOPO-KhCPA-5 composites led to a significant enhancement in both the tensile strength and tensile modulus. Specifically, the tensile strength increased by 38.5% and the tensile modulus by 57.9% compared to pure EP. This improvement can be attributed to the formation of a fully interpenetrating network of macromolecular chain structures by DOPO-KhCPA within the EP matrix. This network increased the entanglement between molecular chains, resulting in positive effects on the mechanical properties of the EP. Multi-element of DOPO-KhCPA exhibits a synergistic effect, providing condensed and noncombustible gas-phase flame retardancy. Additionally, the mechanical properties were improved with the introduction of flame retardants due to the good impact of double-bond cross-linking. The effectiveness of DOPO-KhCPA as an additive for developing high-performance EP with significant potential applications has been proven.

Funder

The General Program of Civil Aviation Flight University of China

National Natural Science Foundation of China

The funding of Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3