Machine learning driven methodology for enhanced nylon microplastic detection and characterization

Author:

Yang Cihang,Xie Junhao,Gowen Aoife,Xu Jun-Li

Abstract

AbstractIn recent years, the field of microplastic (MP) research has evolved significantly; however, the lack of a standardized detection methodology has led to incomparability across studies. Addressing this gap, our current study innovates a reliable MP detection system that synergizes sample processing, machine learning, and optical photothermal infrared (O-PTIR) spectroscopy. This approach includes examining high-temperature filtration and alcohol treatment for reducing non-MP particles and utilizing a support vector machine (SVM) classifier focused on key wavenumbers that could discriminate between nylon MPs and non-nylon MPs (1077, 1541, 1635, 1711 cm−1 were selected based on the feature importance of SVM-Full wavenumber model) for enhanced MP identification. The SVM model built from key wavenumbers demonstrates a high accuracy rate of 91.33%. Results show that alcohol treatment is effective in minimizing non-MP particles, while filtration at 70 °C has limited impact. Additionally, this method was applied to assess MPs released from commercial nylon teabags, revealing an average release of 106 particles per teabag. This research integrates machine learning with O-PTIR spectroscopy, paving the way for potential standardization in MP detection methodologies and providing vital insights into their environmental and health implications.

Funder

Science Foundation Ireland

Publisher

Springer Science and Business Media LLC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3