Author:
Sun Dechao,Gao Guang,Huang Lijun,Liu Yunpeng,Liu Dongquan
Abstract
AbstractThe precise delineation of urban aquatic features is of paramount importance in scrutinizing water resources, monitoring floods, and devising water management strategies. Addressing the challenge of indistinct boundaries and the erroneous classification of shadowed regions as water in high-resolution remote sensing imagery, we introduce WaterDeep, which is a novel deep learning framework inspired by the DeepLabV3 + architecture and an innovative fusion mechanism for high- and low-level features. This methodology first creates a comprehensive dataset of high-resolution remote sensing images, then progresses through the Xception baseline network for low-level feature extraction, and harnesses densely connected Atrous Spatial Pyramid Pooling (ASPP) modules to assimilate multi-scale data into sophisticated high-level features. Subsequently, the network decoder amalgamates the elemental and intricate features and applies dual-line interpolation to the amalgamated dataset to extract aqueous formations from the remote images. Experimental evidence substantiates that WaterDeep outperforms its existing deep learning counterparts, achieving a stellar overall accuracy of 99.284%, FWIoU of 95.58%, precision of 97.562%, recall of 95.486%, and F1 score of 96.513%. It also excels in the precise demarcation of edges and the discernment of shadows cast by urban infrastructure. The superior efficacy of the proposed method in differentiating water bodies in complex urban environments has significant practical applications in real-world contexts.
Funder
Major Scientific and Technological Projects in Ningbo
Ningbo Natural Science Foundation
Ningbo Medical Science and Technology Plan Project
Ningbo Public Welfare Fund Project
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Zhuang, Y., & Chen, C. A method for water body extraction based on the tasselled cap transformation from remote sensing images. In: 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA) IEEE. (2018).
2. Ning, L., Wang, R., Liu, Y., Du, K. & Deng,. Robust river boundaries extraction of dammed lakes in mountain areas after Wenchuan Earthquake from high resolution SAR images combining local connectivity and ACM. ISPRS J. Photogramm Remote Sens. 94, 91–101 (2014).
3. Wu, E. N., Yang, K., Che, Y. & Yuan, W. Characterization of rivers health status and its assessment. Adv. Water Sci. 16, 602–608 (2005).
4. Leng, K.Q., & Software, S.O. PLFT and images fusion-based satellite rivers detection. Comput. Eng. Des. (2018).
5. Rundquist, D. C., Lawson, M. P., Queen, L. P. & Cerveny, R. S. The relationship between summer-season rainfall events and lake-surface area. J. Am. Water Res. Assoc. 23, 493–508 (2010).