Author:
Yamao Yasuo,Oami Takehiko,Yamabe Jun,Takahashi Nozomi,Nakada Taka-aki
Abstract
AbstractThis retrospective cohort study aimed to develop and evaluate a machine-learning algorithm for predicting oliguria, a sign of acute kidney injury (AKI). To this end, electronic health record data from consecutive patients admitted to the intensive care unit (ICU) between 2010 and 2019 were used and oliguria was defined as a urine output of less than 0.5 mL/kg/h. Furthermore, a light-gradient boosting machine was used for model development. Among the 9,241 patients who participated in the study, the proportions of patients with urine output < 0.5 mL/kg/h for 6 h and with AKI during the ICU stay were 27.4% and 30.2%, respectively. The area under the curve (AUC) values provided by the prediction algorithm for the onset of oliguria at 6 h and 72 h using 28 clinically relevant variables were 0.964 (a 95% confidence interval (CI) of 0.963–0.965) and 0.916 (a 95% CI of 0.914–0.918), respectively. The Shapley additive explanation analysis for predicting oliguria at 6 h identified urine values, severity scores, serum creatinine, oxygen partial pressure, fibrinogen/fibrin degradation products, interleukin-6, and peripheral temperature as important variables. Thus, this study demonstrates that a machine-learning algorithm can accurately predict oliguria onset in ICU patients, suggesting the importance of oliguria in the early diagnosis and optimal management of AKI.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine Learning-Based Monitoring and Prognosis of Chronic Kidney Disease Patients;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29