An increase in widespread extreme precipitation events during the northeast monsoon season over south peninsular India

Author:

Shahi Namendra Kumar,Rai Shailendra

Abstract

AbstractWhile the spatio-temporal characteristics of Indian summer monsoon precipitation and its extreme spells have been extensively studied, the northeast monsoon, which occurs from October to December (i.e., post-monsoon season) and affects the southern peninsula of India, has not received as much attention. In light of this, the present study explores the spatio-temporal characteristics of precipitation during the northeast monsoon, with a particular emphasis on widespread extreme precipitation events and their associated large-scale synoptic systems, using recent ensemble of high-resolution regional climate models (RCMs) simulations and the Indian monsoon data assimilation and analysis (IMDAA) reanalysis. The study reveals that both models tend to underestimate the intensity and frequency of observed precipitation events, although their skills in reproducing the observed spatial patterns of both mean and extreme precipitation are quite high (r > 0.75). A substantial increase in widespread extreme precipitation events (nearly twofold), along with a 30% rise in precipitation intensity, has been observed in the recent decade compared to the 1980s, and models demonstrate a similar directional change but tend to underestimate the magnitude of observed precipitation. This increase appears to be linked to the rapid warming of the Indian Ocean, which, in turn, increases the water vapor in the atmosphere, ultimately supplying more moisture to the southeastern peninsular India. On the other hand, observed discrepancies in replicating some of the reported widespread impactful extreme precipitation events in the years 2007 and 2015 over the southern India region underscore the need for caution when interpreting model simulations. Low-pressure systems, such as troughs, associated with cyclonic circulations originating from the Bay of Bengal, have been identified as the primary sources of moisture fueling heavy precipitation during these events. Cluster analysis highlights varying synoptic patterns within the general framework, emphasizing the need for a more nuanced approach in simulating and forecasting extreme precipitation events. Overall, this study underscores the importance of enhancing modeling capabilities to better understand and prepare for the growing challenges posed by extreme precipitation events.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3