Absolute permeability estimation from microtomography rock images through deep learning super-resolution and adversarial fine tuning

Author:

de Castro Vargas Fernandes Júlio,Duarte Vidal Alyne,Carvalho Medeiros Lizianne,Menezes dos Anjos Carlos Eduardo,Surmas Rodrigo,Gonçalves Evsukoff Alexandre

Abstract

AbstractThe carbon capture and storage (CCS) process has become one of the main technologies used for mitigating greenhouse gas emissions. The success of CCS projects relies on accurate subsurface reservoir petrophysical characterization, enabling efficient storage and captured $$\textrm{CO}_2$$ CO 2 containment. In digital rock physics, X-ray microtomography ($$\upmu $$ μ -CT) is applied to characterize reservoir rocks, allowing a more assertive analysis of physical properties such as porosity and permeability, enabling better simulations of porous media flow. Estimating petrophysical properties through numeric simulations usually requires high-resolution images, which are expensive and time-inefficient to obtain with $$\upmu $$ μ -CT. To address this, we propose using two deep learning models: a super-resolution model to enhance the quality of low-resolution images and a surrogate model that acts as a substitute for numerical simulations to estimate the petrophysical property of interest. A correction process inspired by generative adversarial network (GAN) adversarial training is applied. In this approach, the super-resolution model acts as a generator, creating high-resolution images, and the surrogate network acts as a discriminator. By adjusting the generator, images that correct the errors in the surrogate’s estimations are produced. The proposed method was applied to the DeePore dataset. The results shows the proposed approach improved permeability estimation overall.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3